Kadec-Klee property in Musielak-Orlicz function spaces equipped with the Orlicz norm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth points of the unit sphere in Musielak-Orlicz function spaces equipped with the Luxemburg norm

There is given a criterion for an arbitrary element from the unit sphere of Musielak-Orlicz function space equipped with the Luxemburg norm to be a point of smoothness. Next, as a corollary, a criterion of smoothness of these spaces is given.

متن کامل

Characteristic of convexity of Musielak-Orlicz function spaces equipped with the Luxemburg norm

In this paper we extend the result of [6] on the characteristic of convexity of Orlicz spaces to the more general case of Musielak-Orlicz spaces over a non-atomic measure space. Namely, the characteristic of convexity of these spaces is computed whenever the Musielak-Orlicz functions are strictly convex.

متن کامل

Extreme Points and Rotundity in Musielak-Orlicz-Bochner Function Spaces Endowed with Orlicz Norm

and Applied Analysis 3 Put LM X { u ∈ XT : ρM λu < ∞ for some λ > 0 } . 1.5 Then the Musielak-Orlicz-Bochner function space ‖u‖ inf k>0 1 k [ 1 ρM ku ] 1.6 is Banach space. If X R, LM R is said to be Musielak-Orlicz function space. Set K u { k > 0 : 1 k ( 1 ρM ku ) ‖u‖ } . 1.7 In particular, the set K u can be nonempty. To show that, we give a proposition. Proposition 1.1. If limu→∞ M t, u /u ∞...

متن کامل

The fixed point property in Musielak-Orlicz sequence spaces

Abstract. In this paper, we give necessary and sufficient conditions for a point in a Musielak-Orlicz sequence space equipped with the Orlicz norm to be an H-point. We give necessary and sufficient conditions for a Musielak-Orlicz sequence space equipped with the Orlicz norm to have the Kadec-Klee property, the uniform Kadec-Klee property and to be nearly uniformly convex. We show that a Musiel...

متن کامل

Nonsquareness in Musielak-Orlicz-Bochner Function Spaces

and Applied Analysis 3 Proposition 1.2. Function σ t is μ-measurable. Proof. Pick a dense set {ri}i 1 in 0,∞ and set Bk { t ∈ T : M ( t, 1 2 rk ) 1 2 M t, rk } , qk t rkχBk t k ∈ N . 1.7 It is easy to see that for all k ∈ N, σ t ≥ qk t μ-a.e on T . Hence, supk≥1qk t ≤ σ t . For μ-a.e t ∈ T , arbitrarily choose ε ∈ 0, σ t . Then, there exists rk ∈ σ t − ε, σ t such that M t, 1/2 rk 1/2 M t, rk ,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Aequationes mathematicae

سال: 2021

ISSN: 0001-9054,1420-8903

DOI: 10.1007/s00010-021-00808-8